Trigonometry #9
First, graph 2 full cycles of f the function 
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.  We’re going to examine what happens to the horizontal shift of this graph when we change the constants in the function.

(a) Consider the function 
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.  Sketch a big and careful graph of this function, labeling its zeros, maximums, and minimums.

(b) Now consider the function 
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.  How is this function different that the one above?  On the same axes that you graphed the last function , sketch the graph of this function in a different color.

(c) How far is the first graph (
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) shifted horizontally from the original cosine graph.  (There are many correct answers here – why?)  How far is 
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shifted from the original?

(d) Let’s generalize our findings:  How far is the graph of 
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(e) How far is the graph of 
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? (Note:  this is a different C than above.)
(f) Based on your findings, what is a good first step for finding the horizontal shift of a generic sine or cosine function?
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